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Abstract

A method for finding the solution of linear time-varying multi-delay systems using a hybrid function is proposed. The

properties of the hybrid functions which consist of block-pulse functions plus Taylor series are presented. The method is

based upon expanding various time functions in the system as their truncated hybrid functions. Operational matrices of

integration, delay and product are presented and are utilized to reduce the solution of multi-delay systems to the solution

of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

r 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Delays occur frequently in biological, chemical, transportation, electronic, communication, manufacturing
and power systems [1]. Time-delay and multi-delay systems are therefore very important classes of systems
whose control and optimization have been of interest to many investigators [2–5].

Orthogonal functions and Taylor series have received considerable attention in dealing with various
problems of dynamic systems. Much progress has been made towards the solution of delay systems. The
approach is to convert the delay-differential equation to an algebraic form through the use of operational
matrices of integration and delay. These matrices can be uniquely determined based on the particular choices
of basis functions. Special attention has been given to applications of Walsh functions [6], block pulse
functions [7], Laguerre polynomials [8], Legendre polynomials [9], Chebyshev polynomials [10] and Taylor
series [11]. To the best of our knowledge, the literature on numerical solution of multi-delay systems by using
orthogonal functions and Taylor series, is sparse. Chen [12] used Walsh functions for the solution of multi-
delay systems. Due to the nature of these functions, the solution obtained were piecewise constant and
Razzaghi and Razzaghi [13] employed Taylor series to derive continuous solution.
ee front matter r 2005 Elsevier Ltd. All rights reserved.
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The available sets of orthogonal functions can be divided into three classes. The first includes set of
piecewise constant basis functions (PCBFs) (e.g., Walsh, block-pulse, etc.). The second consists of a set of
orthogonal polynomials (e.g., Laguerre, Legendre, Chebyshev, etc.). The third is the widely used set of
sine–cosine functions in Fourier series. While orthogonal polynomials and sine–cosine functions together form
a class of continuous basis functions, PCBFs have inherent discontinuities or jumps. It is worth mentioning
that approximating a continuous function with PCBFs results in an approximation that is piecewise constant.
On the other hand, if a discontinuous function is approximated by continuous basis functions, the
discontinuities are not properly modeled. Signals frequently have mixed features of continuity and jumps.
These signals are continuous over certain segments of time, with discontinuities or jump occurring at the
transitions of the segments. In such situations, neither the continuous basis functions nor PCBFs taken alone
would form an efficient basis in the representation of such signals. In general, the computed response of the
delay systems via orthogonal functions and Taylor series is not in good agreement with the exact response of
the system [14].

In the present paper, we introduce a new direct computational method to solve multi-delay systems. The
method consists of reducing the multi-delay problem to a set of algebraic equations by first expanding the
candidate function as a hybrid function with unknown coefficients. These hybrid functions, which consist of
block-pulse functions plus Taylor series are first introduced. The operational matrices of integration, delay,
and product are given. These matrices are then used to evaluate the coefficients of the hybrid function for the
solution of multi-delay systems.

The paper is organized as follows: in Section 2, we describe the basic properties of the hybrid functions of
block-pulse and Taylor series required for our subsequent development. Section 3 is devoted to the
formulation of linear time-varying multi-delay systems. In Section 4, we apply the proposed numerical method
to multi-delay systems, and in Section 5, we report our numerical finding and demonstrate the accuracy of the
proposed scheme by considering numerical examples.

2. Properties of hybrid functions

2.1. Hybrid functions of block-pulse and Taylor polynomials

Hybrid functions bnmðtÞ; n ¼ 1; 2; . . . ;N ; m ¼ 0; 1; . . . ;M � 1, are defined on the interval ½0; tf Þ as

bnmðtÞ ¼
TmðNt� ðn� 1Þtf Þ; t 2

n� 1

N

� �
tf ;

n

N
tf

� �
;

0; otherwise;

8><
>: (1)

where n and m are the order of block-pulse functions and Taylor polynomials, respectively, and TmðtÞ ¼ tm.

2.2. Function approximation

A function f ðtÞ defined over the interval 0 to tf may be expanded as

f ðtÞ ¼
X1
n¼1

X1
m¼0

cnmbnmðtÞ, (2)

where

cnm ¼
1

Nmm!

dmf ðtÞ

dtm

� �����
t¼ððn�1Þ=NÞtf

.

If f ðtÞ in Eq. (2) is truncated, then Eq. (2) can be written as

f ðtÞ ’
XN

n¼1

XM�1
m¼0

cnmbnmðtÞ ¼ CTBðtÞ,
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where

C ¼ ½c10; . . . ; c1M�1; c20; . . . ; c2M�1; . . . ; cN0; . . . ; cNM�1�
T

and

BðtÞ ¼ ½b10ðtÞ; . . . ; b1M�1ðtÞ; b20ðtÞ; . . . ; b2M�1ðtÞ; . . . ; bN0ðtÞ; . . . ; bNM�1ðtÞ�
T. (3)

The integration of the vector BðtÞ defined in Eq. (3) can be approximated byZ t

0

Bðt0Þdt0 ’ PBðtÞ, (4)

where P is the MN �MN operational matrix for integration and is given by

P ¼

E H H � � � H

0 E H � � � H

0 0 E � � � H

..

. ..
. ..

. ..
.

0 0 0 � � � E

0
BBBBBB@

1
CCCCCCA

(5)

with

H ¼
1

N

tf 0 0 � � � 0

t2f

2
0 0 � � � 0

..

. ..
. ..

. ..
.

tM
f

M
0 0 � � � 0

0
BBBBBBBBB@

1
CCCCCCCCCA

and E is the operational matrix of integration for Taylor polynomials on the interval ½ððn� 1Þ=NÞtf ; ðn=NÞtf �

which is given in Ref. [13] by

E ¼
1

N

0 1 0 � � � 0

0 0 1
2
� � � 0

..

. ..
. ..

. ..
.

0 0 0 � � �
1

M � 1
0 0 0 � � � 0

0
BBBBBBBB@

1
CCCCCCCCA
.

2.3. The product operational matrix of the hybrid of block-pulse and Taylor polynomials

The following property of the product of two hybrid function vectors will also be used:
Let

BðtÞBTðtÞC ’ ~CBðtÞ, (6)

where ~C is a MN �MN product operational matrix. To illustrate the calculation procedure we choose M ¼ 3
and N ¼ 4. Thus we have

C ¼ ½c10; c11; c12; . . . ; c40; c41; c42�
T, (7)

BðtÞ ¼ ½b10ðtÞ; b11ðtÞ; b12ðtÞ; . . . ; b40ðtÞ; b41ðtÞ; b42ðtÞ�
T. (8)
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In Eq. (8) we have

b10 ¼ 1

b11 ¼ 4t

b12 ¼ 16t2

9>=
>;0pto1

4
;

b20 ¼ 1

b21 ¼ 4t� 1

b22 ¼ ð4t� 1Þ2

9>=
>;1

4
pto1

2
(9)

and

b30 ¼ 1

b31 ¼ 4t� 2

b32 ¼ ð4t� 2Þ2

9>=
>;1

2
pto3

4
;

b40 ¼ 1

b41 ¼ 4t� 3

b42 ¼ ð4t� 3Þ2

9>=
>;3

4
pto1. (10)

Using Eqs. (9) and (10) we have bijbkl ¼ 0 if iak; bi0bij ¼ bij ; bi1bi1 ¼ bi2; bi1bi2 ¼ bi3; bi2bi2 ¼ bi4: If we
retain only the elements of BðtÞ in Eq. (8), then we get

BðtÞBTðtÞ ¼

b10 b11 b12

b11 b12 0 �

b12 0 0

b40 b41 b42

� b41 b42 0

b42 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
.

By using the vector C in Eq. (7) the 12� 12 matrix ~C in Eq. (6) is

~C ¼

~C1 0 0 0

0 ~C2 0 0

0 0 ~C3 0

0 0 0 ~C4

0
BBBB@

1
CCCCA,

where ~Ci; i ¼ 1; 2; 3; 4 are 3� 3 matrices given by

~Ci ¼

ci0 ci1 ci2

0 ci0 ci1

0 0 ci0

0
B@

1
CA.

2.4. The multi-delay operational matrix of the hybrid of block-pulse and Taylor polynomials

The delay function Bðt� kjÞ; j ¼ 1; 2; . . . ; r is the shift of the function BðtÞ defined in Eq. (3), along the time
axis by kj , where k1; k2; . . . ; kr are rational numbers in ð0; 1Þ. It is assumed without loss of generality that
k1ok2o � � �okr. The general expression is given by

Bðt� kjÞ ¼ DjBðtÞ; t4kj , (11)

where Dj is the delay operational matrix of hybrid functions corresponding to kj. To find Dj for j ¼ 1; 2; . . . ; r,
we first choose N the order of block-pulse functions in the following manner:

We define w as the smallest positive integer number for which wkj 2 Z for j ¼ 1; 2; . . . ; r. Next we choose l
as the greatest common divisor of the integers wkj ; j ¼ 1; 2; . . . ; r, that is

l ¼ g.c.dðwk1;wk2; . . . ;wkrÞ.
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Let

N ¼

w

l
if

w

l
2 Z;

w

l

h i
þ 1 otherwise;

8><
>: (12)

where ½:� denotes greatest integer value.
With the aid of Eq. (1), it is noted that for the case kjotokj þ l=w, the only terms with nonzero values are

b1mðt� kjÞ for m ¼ 0; 1; 2; . . . ;M � 1. If we set bj ¼ wkj=lþ 1, and expand b1mðt� kjÞ in terms of bbjmðtÞ, since
b1mðt� kjÞ ¼ bbj mðtÞ, then the coefficient (element) of the delay matrix is an M �M identity matrix.

In a similar manner, for kj þ l=wotokj þ 2l=w, only b2mðt� kjÞ for m ¼ 0; 1; 2; . . . ;M � 1 has nonzero
values. If we set gj ¼ bj þ 1, and expand b2mðt� kjÞ in terms of bgj mðtÞ, since b2mðt� kjÞ ¼ bgjmðtÞ, then the
element of the delay matrix is M �M identity matrix. Thus, if we expand Bðt� kjÞ in terms of BðtÞ we find
NM �NM matrix Dj as

Dj ¼

0 0 � � � 0 I 0 � � � 0

0 0 � � � 0 0 I � � � 0

..

. ..
. ..

. ..
. ..

. ..
.

0 0 � � � 0 0 0 � � � I

0 0 � � � 0 0 0 � � � 0

0
BBBBBB@

1
CCCCCCA
.

It is noted that the first identity matrix in the first row is located at the bjth column.
3. Problem statement

Consider the following linear time-varying multi-delay system:

_X ðtÞ ¼ EðtÞX ðtÞ þ
Xr

j¼1

FjðtÞX ðt� kjÞ þ GðtÞUðtÞ; 0ptp1, (13)

X ð0Þ ¼ X 0, (14)

X ðtÞ ¼ FðtÞ; to0, (15)

where X ðtÞ 2 Rl , UðtÞ 2 Rq, EðtÞ, GðtÞ, and FjðtÞ; j ¼ 1; 2; . . . ; r, are matrices of appropriate dimensions, X 0 is
a constant specified vector, and FðtÞ is an arbitrary known function. The problem is to find X ðtÞ, 0ptp1,
satisfying Eqs. (13)–(15).
4. Approximation using hybrid functions

Let

X ðtÞ ¼ ½x1ðtÞ;x2ðtÞ; . . . ;xlðtÞ�
T; UðtÞ ¼ ½u1ðtÞ; u2ðtÞ; . . . ; uqðtÞ�

T, (16)

B̂ðtÞ ¼ I l � BðtÞ; B̂1ðtÞ ¼ Iq � BðtÞ, (17)

where I l and Iq are the l- and q-dimensional identity matrices, BðtÞ is MN � 1 vector and � denotes the
Kronecker product [15]. Using the property of the Kronecker product, B̂ðtÞ and B̂1ðtÞ are matrices of order
lMN � l and qMN � q, respectively. Assume that each xiðtÞ and each of ujðtÞ; i ¼ 1; 2; . . . ; l; j ¼ 1; 2; . . . ; q,
can be written in terms of hybrid functions as

xiðtÞ ¼ BTðtÞX i; ujðtÞ ¼ BTðtÞUj.
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Then, using Eqs. (16) and (17), we have

X ðtÞ ¼ B̂TðtÞX ; UðtÞ ¼ B̂T
1 ðtÞU , (18)

where X and U are vectors of order lMN � 1 and qMN � 1, respectively, given by

X ¼ ½X 1;X 2; . . . ;X l �
T; U ¼ ½U1;U2; . . . ;Uq�

T.

Similarly we have

X ð0Þ ¼ B̂TðtÞd; Fðt� kjÞ ¼ B̂TðtÞRj , (19)

where d and Rj ; j ¼ 1; 2; . . . ; r, are vectors of order lMN � 1 given by

d ¼ ½d1; d2; . . . ; dl �
T; Rj ¼ ½aj1; aj2; . . . ; ajl �

T.

We now expand EðtÞ; F jðtÞ; j ¼ 1; 2; . . . ; r, and GðtÞ by hybrid functions as follows:

EðtÞ ¼ ½E10;E11; . . . ;E1M�1; . . . ;EN0;EN1; . . . ;ENM�1�
TB̂ðtÞ ¼ ETB̂ðtÞ,

FjðtÞ ¼ ½F j10;Fj11; . . . ;F j1ðM�1Þ; . . . ;FjN0;FjN1; . . . ;F jNðM�1Þ�
TB̂ðtÞ ¼ FT

j B̂ðtÞ,

GðtÞ ¼ ½G10;G11; . . . ;G1M�1; . . . ;GN0;GN1; . . . ;GNM�1�
TB̂1ðtÞ ¼ GTB̂1ðtÞ,

where ET; FT
j ; j ¼ 1; 2; . . . ; r, and GT are of dimensions l � lMN, l � lMN and l � qMN, respectively.

We can also write X ðt� kjÞ; j ¼ 1; 2; . . . ; r, in terms of hybrid functions as

X ðt� kjÞ ¼
B̂TðtÞRj ; 0ptpkj ;

B̂TðtÞD̂T
j X ; kjotp1;

8<
:

where

D̂j ¼ I l �Dj

and Dj is the delay operational matrix given in Eq. (11). Now we have

EðtÞX ðtÞ ¼ ETB̂ðtÞB̂TðtÞX ¼ B̂TðtÞ ~ETX ; GðtÞUðtÞ ¼ GTB̂1ðtÞB̂
T
1 ðtÞU ¼ B̂TðtÞ ~GTU , (20)

where ~E and ~G can be calculated similarly to matrix ~C in Eq. (6). Moreover,Z t

0

B̂Tðt0Þdt0 ¼ ðI l � BTðtÞÞðI l � PTÞ ¼ B̂TðtÞP̂T, (21)

Z t

0

F jðt
0ÞX ðt0 � kjÞdt0 ¼

B̂TðtÞP̂T ~FT
j Rj ; 0ptpkj ;

B̂TðtÞZj
~FT

j Rj þ B̂TðtÞP̂T ~FT
j D̂T

j X ; kjotp1;

8<
: (22)

where

P̂ ¼ I l � P

and P is the operational matrix of integration given in Eq. (5), andZ kj

0

B̂TðtÞdt ¼ B̂TðtÞZj,

where Zj ; j ¼ 1; 2; . . . ; r, is a constant matrix of order lMN � lMN.
By integrating Eq. (13) from 0 to t and using Eqs. (18)–(22), we have

B̂TðtÞX � B̂TðtÞd ¼ B̂TðtÞP̂T ~ETX þ
Xr

j¼1

½B̂TðtÞP̂T ~FT
j Rj þ B̂TðtÞZj

~FT
j Rj þ B̂TðtÞP̂T ~FT

j D̂T
j X �

þ B̂TðtÞP̂T ~GTU . ð23Þ
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Using Eq. (23) we obtain

X ¼ I � P̂T ~ET �
Xr

j¼1

P̂T ~FT
j D̂T

j

" #�1
d þ

Xr

j¼1

ðP̂T ~FT
j Rj þ Zj

~FT
j RjÞ þ P̂T ~GTU

" #
.

5. Illustrative examples

In this section three examples are given to demonstrate the applicability, efficiency, and accuracy of our
proposed method. First by using Eq. (12), we determine N, which gives the number of intervals for a specific
problem. Thus we have different intervals given by

0;
l
w

� �
;

l
w
;
2l
w

� �
; . . . ; ðN � 1Þ

l
w
;N

l
w

� �
.

To define xðtÞ for t in the interval ½0; l=w� we map ½0; l=w� into ½0;Nl=w� by mapping t into Nt, and for t in the
interval ½l=w; 2l=w� we map this interval into ½0;Nl=w� by mapping t into Nt�Nðl=wÞ, and similarly for the
other intervals. When selecting M, we first choose an arbitrary number depending on the problem. Since we
are approximating by using Taylor series only in each subinterval, if the exact solutions in each subinterval are
polynomials, we can increase the value of M by 1 until two consecutive results are the same in each
subinterval. When the exact solutions in each subinterval are not polynomials, we evaluate the results for two
consecutive M 0s for different t in ½0; 1� until the results are similar up to a required number of decimal places
for each subinterval.

5.1. Example 1

Consider the multi-delay system described by

_xðtÞ ¼ xðt� 0:35Þ þ xðt� 0:7Þ þ 1; 0ptp1, (24)

xðtÞ ¼ 0; tp0. (25)

Although the above system is time invariant, the method described here can be used. The exact solution is [13]

xðtÞ ¼

t; 0ptp0:35;

tþ 1
2
ðt� 0:35Þ2; 0:35ptp0:7;

609
800
þ 27

20
ðt� 0:7Þ þ ðt� 0:7Þ2 þ 1

6
ðt� 0:7Þ3; 0:7ptp1:

8><
>:

By using Eq. (12), since k1 ¼ 35=100 ¼ 7=20 and k2 ¼ 7=10, we get w ¼ 20 and l ¼ g.c.dð7; 14Þ ¼ 7, hence we
select N ¼ ½20=7� þ 1 ¼ 3, we also choose M ¼ 4.

Let

xðtÞ ¼ CTBðtÞ, (26)

where

C ¼ ½c10; . . . ; c13; c20; . . . ; c23; c30; . . . ; c33; c40; . . . ; c43�
T (27)

and

BðtÞ ¼ ½b10ðtÞ; . . . ; b13ðtÞ; b20ðtÞ; . . . ; b23ðtÞ; b30ðtÞ; . . . ; b33ðtÞ; b40ðtÞ; . . . ; b43ðtÞ�
T. (28)

By expanding t in terms of hybrid functions we get

t ¼ eTBðtÞ, (29)

where

e ¼ ½0; 1
3
; 0; 0; 7

20
; 1
3
; 0; 0; 7

10
; 1
3
; 0; 0�T.



ARTICLE IN PRESS
H.R. Marzban, M. Razzaghi / Journal of Sound and Vibration 292 (2006) 954–963 961
We also have

xðt� 0:35Þ ¼ CTD1BðtÞ; t40:35, (30)

xðt� 0:7Þ ¼ CTD2BðtÞ; t40:7, (31)

where D1 and D2 are the delay operational matrices given by

D1 ¼

0 I4 0

0 0 I4

0 0 0

0
B@

1
CA; D2 ¼

0 0 I4

0 0 0

0 0 0

0
B@

1
CA, (32)

where I4 is a 4-dimensional identity matrix.
Integrating Eq. (24) from 0 to t and using Eqs. (25)–(32) we obtain

CT ¼ eT½I12 �DP��1,

where D ¼ D1 þD2 and P is the operational matrix of integration given in Eq. (5). Using Eq. (32) the vector C

can be found as

C ¼ ½0; 1
3
; 0; 0; 7

20
; 1
3
; 1
18
; 0; 609

800
; 9
20
; 1
9
; 1
162
�T.

Further, to define xðtÞ for t in the interval ½0; 0:35� we map ½0; 0:35� into ½0; 1:05� by mapping t into 3t and
similarly for the other intervals. From Eq. (26) we get

xðtÞ ¼

1
3
T1ð3tÞ; 0ptp0:35;

7
20

T0ð3t� 1:05Þ þ 1
3
T1ð3t� 1:05Þ þ 1

18
T2ð3t� 1:05Þ2; 0:35ptp0:7;

609
800

T0ð3t� 2:1Þ þ 9
20

T1ð3t� 2:1Þ þ 1
9
T2ð3t� 2:1Þ2 þ 1

162
T3ð3t� 2:1Þ3; 0:7ptp1;

8>><
>>:

where TmðtÞ ¼ tm; m ¼ 0; 1; . . . ;M � 1. After simplifying the same value as the exact xðtÞ would be obtained.

5.2. Example 2

Consider the following multi-delay system:

_xðtÞ ¼ txðt� 0:4Þ þ xðt� 0:8Þ þ 1; 0ptp1, (33)

xðtÞ ¼ 0; tp0. (34)

The exact solution is [13]

xðtÞ ¼

t; 0ptp0:4;
2
5
þ ðt� 0:4Þ þ 1

5
ðt� 0:4Þ2 þ 1

3
ðt� 0:4Þ3; 0:4ptp0:8;

64
75
þ 33

25
ðt� 0:8Þ þ 11

10
ðt� 0:8Þ2 þ 29

75
ðt� 0:8Þ3 þ 7

60
ðt� 0:8Þ4 þ 1

15
ðt� 0:8Þ5; 0:8ptp1:

8><
>:

Here, we solve this problem with hybrid functions by choosing N ¼ 3 and M ¼ 6.
Let

xðtÞ ¼ CTBðtÞ, (35)

where C and BðtÞ can be obtained similarly to Eqs. (27) and (28). We also have

xðt� 0:4Þ ¼ CTD1BðtÞ; t40:4, (36)

xðt� 0:8Þ ¼ CTD2BðtÞ; t40:8, (37)

t ¼ ½0; 1
3
; 0; 0; 0; 0; 2

5
; 1
3
; 0; 0; 0; 0; 4

5
; 1
3
; 0; 0; 0; 0�BðtÞ ¼ KTBðtÞ, (38)

where D1 and D2 are the delay operational matrices given in Eq. (32).
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Integrating Eq. (33) from 0 to t and using Eqs. (34)–(38) we get

CT ¼ KT½I18 �D1
~KP�D2P��1, (39)

where I18 is a 18-dimensional identity matrix, ~K can be obtained similarly to matrix ~C in Eq. (6), and P is the
operational matrix of integration given in Eq. (5).

From Eq. (39) the vector C can be found as

C ¼ ½0; 1
3
; 0; 0; 0; 0; 2

5
; 1
3
; 1
45
; 1
81
; 0; 0; 64

75
; 11
25
; 11
90
; 29
2025

; 7
4860

; 1
3645
�T.

Using Eq. (35) the same value as the exact xðtÞ would be obtained.

5.3. Example 3

Consider the time-varying multi-delay system described by

_x1ðtÞ

_x2ðtÞ

 !
¼

t 1

t 2t

� �
x1ðt�

1
3
Þ

x2ðt�
1
3Þ

 !
þ

2 t

t2 0

� �
x1ðt�

2
3
Þ

x2ðt�
2
3Þ

 !
þ

0

1

� �
uðtÞ (40)

with

x1ðtÞ ¼ x2ðtÞ ¼ uðtÞ ¼ 0; t 2 ½�2
3
; 0� (41)

and

uðtÞ ¼ 2tþ 1; t40. (42)

The exact solutions are [14]

x1ðtÞ ¼

0; 0pto1
3
;

7
162
� 2

9
tþ 1

6
t2 þ 1

3
t3; 1

3
pto2

3
;

11
162
� 58

243
tþ 31

162
t2 þ 1

9
t3 þ 7

72
t4 þ 1

6
t5; 2

3
ptp1

8><
>:

and

x2ðtÞ ¼

tþ t2; 0pto1
3
;

5
486
þ tþ 7

9
t2 þ 2

9
t3 þ 1

2
t4; 1

3
pto2

3
;

1
486þ tþ 200

243t
2 þ 20

81t
3 þ 29

72t
4 � 1

9t
5 þ 1

6t
6; 2

3ptp1:

8><
>:

Here, we solve this problem by choosing N ¼ 3 and M ¼ 7. Let

x1ðtÞ ¼ CT
1 BðtÞ; x2ðtÞ ¼ CT

2 BðtÞ, (43)

where C1, C2 and BðtÞ can be obtained similarly to Eqs. (27) and (28). By expanding t and t2 in terms of hybrid
functions we obtain

t ¼ ½0; 1
3
; 0; . . . ; 0; 1

3
; 1
3
; 0; . . . ; 0; 2

3
; 1
3
; 0; . . . ; 0�BðtÞ ¼ KT

1 BðtÞ, (44)

t2 ¼ ½0; 0; 1
9
; 0; . . . ; 0; 1

9
; 2
9
; 1
9
; 0; . . . ; 0; 4

9
; 4
9
; 1
9
; 0; . . . ; 0�BðtÞ ¼ KT

2 BðtÞ. (45)

We also have

tx1ðt�
1
3
Þ ¼ CT

1 D1
~K1BðtÞ; tx2ðt�

1
3
Þ ¼ CT

2 D1
~K1BðtÞ, (46)

t2x1ðt�
2
3
Þ ¼ CT

1 D2
~K2BðtÞ; tx2ðt�

2
3
Þ ¼ CT

2 D2
~K1BðtÞ, (47)

where ~K1 and ~K2 can be calculated similarly to matrix ~C in Eq. (6). By integrating Eq. (40) from 0 to t and
using Eqs. (41)–(47) we get

CT
1 ¼ CT

1 D1
~K1Pþ CT

2 D1Pþ 2CT
1 D2Pþ CT

2 D2
~K1P, (48)
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CT
2 ¼ CT

1 D1
~K1Pþ 2CT

2 D1
~K1Pþ CT

1 D2
~K2Pþ KT

1 þ KT
2 . (49)

Solving Eqs. (48) and (49) and using Eq. (43) the same values as the exact x1ðtÞ and x2ðtÞ would be obtained.

6. Conclusion

The hybrid of block-pulse functions and Taylor series and the associated operational matrices of integration
P, product ~C, and delay D are applied to solve the linear time-varying multi-delay systems. The method is
based upon reducing the system into a set of algebraic equations. The matrices P, ~C, and D have many zeros;
hence, the method is computationally very attractive. It is also shown that the hybrid of block-pulse functions
and Taylor series provides an exact solution for Examples 1–3. It is noted that exact solutions obtained in
Examples 1–3 cannot be obtained either with Taylor series nor with orthogonal functions alone.
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